CHROM. 13,344

Note

High-performance liquid chromatographic separation of flavan- 4α -ol and flavan- 4β -ol epimers

S. R. UDUPA* and A. V. PATANKAR

Bio-Organic Division, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Bombay-85 (India)

(Received September 15th, 1980)

Flavan-4-ol is an important intermediate in the biosynthetic pathways of flavonoids. It exists in two stereoisomeric forms, *viz.*, flavan-4 β -ol (1) and flavan-4 α -ol (2). In the course of studies¹ on the fermentation of (±)-flavanone by *Gibberella fujikuroi* NCIM 665, optically pure (-)-flavan-4 α -ol was isolated. However, a careful study of the nuclear magnetic resonance (NMR) spectrum of a product obtained from the mother liquor revealed that a small amount of flavan-4 β -ol was also present. A simple separation technique for these epimers is therefore required.

Recently it has been shown that high-performance liquid chromatography (HPLC) can be employed for the separation of epimers. Thus α - and β -carbinols², 16 α ,17 α -acetals of 16 α -hydroxyprednisolone^{3,4} and *cis/trans* isomers of substituted cinnamic acids^{5,6} have been successfully separated by reversed-phase HPLC. In the present study this technique was employed for the separation of flavan-4 β -ol (1) and flavan-4 α -ol (2) on μ Bondapak C₁₈.

EXPERIMENTAL

Apparatus

A Waters Assoc. (Milford, MA, U.S.A.) Model ALC/GPC-244 liquid chromatograph, equipped with a Model 6000A solvent delivery system and a Model U6K injection system, was used. The reversed-phase column (30 cm \times 3.9 mm I.D.) was packed with μ Bondapak C₁₈ [octadecyltrichlorosilane chemically bonded to Porasil (<10 μ m) packing; Waters Assoc.]. The mobile phase was prepared from methanol (Uvasol; E. Merck, Bombay, India), double glass-distilled water and double distilled acetic acid. Methanol was filtered through a FHLP 0.5- μ m filter (Millipore, Bedford, MA, U.S.A.), and water and acetic acid were filtered through an HAWP 0.45- μ m filter (Millipore). The column pressure was 2000 p.s.i. at 1.5 ml/min with methanolwater (50:50) as solvent. UV (Kit Model 440) detection was carried out at 254 nm and the sensitivity of the detector was 0.05 absorbance units full scale (a.u.f.s.). The chart speed was 0.1 in./min, the temperature was ambient and the solvent system was used isocratically. Determinations of dead volume were made by using acetone.

Sample preparation

 (\pm) -Flavan-4 β -ol (1) was synthesised by NaBH₄ reduction⁷ of flavanone, while optically pure (-)-flavan-4 α -ol (2) was obtained from the fermentation of (\pm) -flavanone by *Gibberella fujikuroi* NCIM 665 followed by elaborate column chromatography¹. Sample solution (10 μ l) containing flavan-4 α -ol and flavan-4 β -ol (3 μ g each) was chromatographed by HPLC isocratically.

RESULTS AND DISCUSSION

The two flavan-4-ol epimers were separated from each other by HPLC on a reversed-phase μ Bondapak C₁₈ column using methanol-water or methanol-water-acetic acid in different combinations. Fig. 1 shows the HPLC separation of the two epimers in various solvent systems. The epimers were collected and identified by mass spectrometry as well as by co-chromatography. Capacity factors (k') for the isomers (1, 2) in various mobile phases are shown in Table I.

Fig. 1. HPLC separation of flavan- 4β -ol (1) and flavan- 4α -ol (2) isomers in various solvent systems: methanol-water (6:4) (a), (1:1) (b), (4:6) (c), (3:7) (d); methanol-water-acetic acid (33:65:2) (e), (30:65:5) (f). Other conditions: column, μ Bondapak C₁₈ (30 cm × 3.9 mm I.D.); flow-rate, 1.5 ml/ min; detector, UV 254 nm; sensitivity, 0.05 a.u.f.s.; chart speed, 0.1 in./min; sample injection, 10 μ l containing 3 μ g each of 1 and 2.

TABLE I

CAPACITY FACTORS (k') FOR FLAVAN-4 α -OL AND FLAVAN-4 β -OL ON REVERSED-PHASE μ BONDAPAK C₁₈ IN VARIOUS SOLVENT SYSTEMS

 $k' = (t_R - t_0)/t_0$; t_0 = retention time of one column void volume, t_R = retention time of the compound. t_0 for solvent systems 1-3, 2 min 36 sec; t_0 for solvent systems 4-6, 2 min 56 sec.

Solvent system		k'	
		Flavan-4β-ol	Flavan-4a-ol
1	Methanol-water (60:40)	1.30	1.50
2	Methanol-water (50:50)	3.50	4.33
3	Methanol-water (40:60)	8.62	10.69
4	Methanol-water (30:70)	23.62	29.92
5	Methanol-water-acetic acid (33:65:2)	11.69	14.69
6	Methanol-water-acetic acid (30:65:5)	9.77	12.31

The results indicate that an increase in the proportion of water improves the epimer separation due to its effect³ on k'. It was also observed that addition of acetic acid (2-5%) to the methanol-water solvent system considerably reduced the retention time of the two epimers (Fig. 1), giving better resolution as compared to the water-methanol solvent system. This is in good agreement with an earlier observation⁸ where the addition of acetic acid (ca. 5%) to the methanol-water solvent system improved the separation of flavonoids.

The qualitative determination of these epimers in a given sample can be achieved by using methanol-water (50:50) as solvent, while methanol-water-acetic acid (30:65:5) could be used for the quantitative separation of the epimers. The above results showed that HPLC separation on μ Bondapak C₁₈ is an effective and rapid method for the separation of isomeric flavan-4-ols.

REFERENCES

- 1 S. R. Udupa and M. S. Chadha, Indian J. Biochem. Biophys., 15 (1978) 328.
- 2 R. W. Souter, J. Chromatogr., 134 (1977) 187.
- 3 A. Wikby, L. Nilsson and G. Hällsas, J. Chromatogr., 157 (1978) 51.
- 4 A. Wikby, A. Thalén and G. Oresten, J. Chromatogr., 157 (1978) 65.
- 5 S. Caccamese, R. Azzolina and M. Davino, Chromatographia, 12 (1979) 545.
- 6 R. D. Hartley and H. Buchan, J. Chromatogr., 180 (1979) 139.
- 7 H. G. Krishnamurty, V. Krishnamoorthy and T. R. Seshadri, Phytochemistry, 2 (1963) 47.
- 8 G. J. Niemann and J. W. Koerselman-kooy, Planta Med., 31 (1977) 297.